An Introduction to Irrationality and Transcendence Methods. 3 Elliptic Functions and Transcendence

نویسنده

  • Michel Waldschmidt
چکیده

hence it yields an isomorphism between the quotient additive group C/2πiZ and the multiplicative group C×. The group C× is the group of complex points of the multiplicative group Gm; z 7→ e is the exponential function of the multiplicative group Gm. We shall replace this algebraic group by an elliptic curve. We could replace it also by other commutative algebraic groups. As a first example, the exponential function of the additive group Ga is C → C z 7→ z

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine approximation , irrationality and transcendence Michel

1. Algebraic independence of the two functions ℘(z) and ez. Legendre’s relation η2ω1 − η1ω2 = 2iπ. Proof: integrate ζ(z)dz on a fundamental parallelogram. Application: algebraic independence of the two functions az + bζ(z) and ℘(z). 2. Section § 10.7.2: Morphisms between elliptic curves. The modular invariant. 3. Section § 10.7.3: Endomorphisms of an elliptic curve; complex multiplications. Alg...

متن کامل

An Introduction to Irrationality and Transcendence Methods. 3 Auxiliary Functions in Transcendence Proofs 3.1 Explicit Functions

This yields an irrationality criterion (which is the basic tool for proving the irrationality of specific numbers), and Liouville extended it into a transcendence criterion. The proof by Liouville involves the irreducible polynomial f ∈ Z[X] of the given irrational algebraic number α. Since α is algebraic, there exists an irreducible polynomial f ∈ Z[X] such that f(α) = 0. Let d be the degree o...

متن کامل

7 Elliptic Functions and Transcendence

Transcendental numbers form a fascinating subject: so little is known about the nature of analytic constants that more research is needed in this area. Even when one is interested only in numbers like π and eπ that are related to the classical exponential function, it turns out that elliptic functions are required (so far, this should not last forever!) to prove transcendence results and get a ...

متن کامل

An Introduction to Irrationality and Transcendence Methods. 5 Conjectures and Open Problems 5.1 Schanuel's Conjecture and Some Consequences

We already met a number of open problems in these notes, in particular in § 1.1.1. We collect further conjectures in this field, but this is only a very partial list of questions which deserve to be investigated further. Part of this section if from [W 2004], especially § 3. When K is a field and k a subfield, we denote by trdegkK the transcendence degree of the extension K/k. In the case k = Q...

متن کامل

University of Natural Sciences Introduction to Diophantine Methods: Irrationality and Transcendence

1 Irrationality 3 1.1 Simple proofs of irrationality . . . . . . . . . . . . . . . . . . . . 3 1.2 Variation on a proof by Fourier (1815) . . . . . . . . . . . . . . . 10 1.2.1 Irrationality of e . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 The number e is not quadratic . . . . . . . . . . . . . . . 11 1.2.3 Irrationality of e √ 2 (Following a suggestion of D.M. Masser) . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008